twofactor/vendor/github.com/sec51/cryptoengine/crypto_engine.go
silenteh 72a472700b Addressed issue #1 - Byte order was the problem
The counter needs to be represented in bigendian format.
Unfortunately with commit #00045cb I made the unfortunate choice to swap the endiannes from big-endian to little-endian.
This broke the functionality for certain counters.

- [x] Added Go vendoring
- [x] Bumped version of golang in travis yml file
- [x] Removed conversion files and instead used import of convert sec51 external library
2016-04-24 22:24:31 +02:00

512 lines
16 KiB
Go

package cryptoengine
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"errors"
"fmt"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/secretbox"
"log"
"math"
"net/url"
"regexp"
"strconv"
"strings"
"sync"
)
const (
nonceSize = 24 // this is the nonce size, required by NaCl
keySize = 32 // this is the nonce size, required by NaCl
rotateSaltAfterDays = 7 // this is the amount of days the salt is valid - if it crosses this amount a new salt is generated
tcpVersion = 0 // this is the current TCP version
)
var (
KeySizeError = errors.New(fmt.Sprintf("The provisioned key size is less than: %d\n", keySize))
KeyNotValidError = errors.New("The provisioned public key is not valid")
SaltGenerationError = errors.New("Could not generate random salt")
KeyGenerationError = errors.New("Could not generate random key")
MessageDecryptionError = errors.New("Could not verify the message. Message has been tempered with!")
MessageParsingError = errors.New("Could not parse the Message from bytes")
messageEmpty = errors.New("Can not encrypt an empty message")
whiteSpaceRegEx = regexp.MustCompile("\\s")
emptyKey = make([]byte, keySize)
// salt for derivating keys
saltSuffixFormat = "%s_salt.key" // this is the salt file,for instance: sec51_salt.key
// secret key for symmetric encryption
secretSuffixFormat = "%s_secret.key" // this is the secret key crypto file, for instance: sec51_secret.key
// asymmetric keys
publicKeySuffixFormat = "%s_public.key" // this is the public key crypto file,for instance: sec51_public.key
privateSuffixFormat = "%s_private.key" // this is the private key crypto file,for instance: sec51_priovate.key
// nonce secret key
nonceSuffixFormat = "%s_nonce.key" // this is the secret key crypto file used for generating nonces,for instance: sec51_nonce.key
)
// This is the basic object which needs to be instanciated for encrypting messages
// either via public key cryptography or private key cryptography
// The object has the methods necessary to execute all the needed functions to encrypt and decrypt a message, both with symmetric and asymmetric
// crypto
type CryptoEngine struct {
context string // this is the context used for the key derivation function and for namespacing the key files
publicKey [keySize]byte // cached asymmetric public key
privateKey [keySize]byte // cached asymmetric private key
secretKey [keySize]byte // secret key used for symmetric encryption
salt [keySize]byte // salt for deriving the random nonces
nonceKey [keySize]byte // this key is used for deriving the random nonces. It's different from the privateKey
mutex sync.Mutex // this mutex is used ti make sure that in case the engine is used by multiple thread the pre-shared key is correctly generated
preSharedKeysMap map[string][keySize]byte // this map holds the combination hash of peer public key as the map key and the preshared key as value used to encrypt
counter uint64 // this is the counter which is appended to the HKDF at each call
counterMutex sync.Mutex // this is the counter mutex for a safe incrementation (TODO: look into atomic)
}
// This function initialize all the necessary information to carry out a secure communication
// either via public key cryptography or secret key cryptography.
// The peculiarity is that the user of this package needs to take care of only one parameter, the communicationIdentifier.
// It defines a unique set of keys between the application and the communicationIdentifier unique end point.
// IMPORTANT: The parameter communicationIdentifier defines several assumptions the code use:
// - it names the secret key files with the comuncationIdentifier prefix. This means that if you want to have different secret keys
// with different end points, you can differrentiate the key by having different unique communicationIdentifier.
// It, also, loads the already created keys back in memory based on the communicationIdentifier
// - it does the same with the asymmetric keys
// The communicationIdentifier parameter is URL unescape, trimmed, set to lower case and all the white spaces are replaced with an underscore.
// The publicKey parameter can be nil. In that case the CryptoEngine assumes it has been instanciated for symmetric crypto usage.
func InitCryptoEngine(communicationIdentifier string) (*CryptoEngine, error) {
// define an error object
var err error
// create a new crypto engine object
ce := new(CryptoEngine)
// sanitize the communicationIdentifier
ce.context = sanitizeIdentifier(communicationIdentifier)
// load or generate the salt
salt, err := loadSalt(ce.context)
if err != nil {
return nil, err
}
ce.salt = salt
// load or generate the corresponding public/private key pair
ce.publicKey, ce.privateKey, err = loadKeyPairs(ce.context)
if err != nil {
return nil, err
}
// load or generate the secret key
secretKey, err := loadSecretKey(ce.context)
if err != nil {
return nil, err
}
ce.secretKey = secretKey
// load the nonce key
nonceKey, err := loadNonceKey(ce.context)
if err != nil {
return nil, err
}
ce.nonceKey = nonceKey
// init the map
ce.preSharedKeysMap = make(map[string][keySize]byte)
// finally return the CryptoEngine instance
return ce, nil
}
// this function reads nonceSize random data
func generateSalt() ([keySize]byte, error) {
var data32 [keySize]byte
data := make([]byte, keySize)
_, err := rand.Read(data)
if err != nil {
return data32, err
}
total := copy(data32[:], data)
if total != keySize {
return data32, SaltGenerationError
}
return data32, nil
}
// this function reads keySize random data
func generateSecretKey() ([keySize]byte, error) {
var data32 [keySize]byte
data := make([]byte, keySize)
_, err := rand.Read(data)
if err != nil {
return data32, err
}
total := copy(data32[:], data[:keySize])
if total != keySize {
return data32, KeyGenerationError
}
return data32, nil
}
// load the salt random bytes from the id_salt.key
// if the file does not exist, create a new one
// if the file is older than N days (default 2) generate a new one and overwrite the old
// TODO: rotate the salt file
func loadSalt(id string) ([keySize]byte, error) {
var salt [keySize]byte
saltFile := fmt.Sprintf(saltSuffixFormat, id)
if keyFileExists(saltFile) {
return readKey(saltFile, keysFolderPrefixFormat)
}
// generate the random salt
salt, err := generateSalt()
if err != nil {
return salt, err
}
// write the salt to the file with its prefix
if err := writeKey(saltFile, keysFolderPrefixFormat, salt[:]); err != nil {
return salt, err
}
// return the salt and no error
return salt, nil
}
// load the key random bytes from the id_secret.key
// if the file does not exist, create a new one
func loadSecretKey(id string) ([keySize]byte, error) {
var key [keySize]byte
keyFile := fmt.Sprintf(secretSuffixFormat, id)
if keyFileExists(keyFile) {
return readKey(keyFile, keysFolderPrefixFormat)
}
// generate the random salt
key, err := generateSecretKey()
if err != nil {
return key, err
}
// write the salt to the file with its prefix
if err := writeKey(keyFile, keysFolderPrefixFormat, key[:]); err != nil {
return key, err
}
// return the salt and no error
return key, nil
}
// load the nonce key random bytes from the id_nonce.key
// if the file does not exist, create a new one
func loadNonceKey(id string) ([keySize]byte, error) {
var nonceKey [keySize]byte
nonceFile := fmt.Sprintf(nonceSuffixFormat, id)
if keyFileExists(nonceFile) {
return readKey(nonceFile, keysFolderPrefixFormat)
}
// generate the random salt
nonceKey, err := generateSecretKey()
if err != nil {
return nonceKey, err
}
// write the salt to the file with its prefix
if err := writeKey(nonceFile, keysFolderPrefixFormat, nonceKey[:]); err != nil {
return nonceKey, err
}
// return the salt and no error
return nonceKey, nil
}
// load the key pair, public and private keys, the id_public.key, id_private.key
// if the files do not exist, create them
// Returns the publicKey, privateKey, error
func loadKeyPairs(id string) ([keySize]byte, [keySize]byte, error) {
var private [keySize]byte
var public [keySize]byte
var err error
// try to load the private key
privateFile := fmt.Sprintf(privateSuffixFormat, id)
if keyFileExists(privateFile) {
if private, err = readKey(privateFile, keysFolderPrefixFormat); err != nil {
return public, private, err
}
}
// try to load the public key and if it succeed, then return both the keys
publicFile := fmt.Sprintf(publicKeySuffixFormat, id)
if keyFileExists(publicFile) {
if public, err = readKey(publicFile, keysFolderPrefixFormat); err != nil {
return public, private, err
}
// if we reached here, it means that both the private and the public key
// existed and loaded successfully
return public, private, err
}
// if we reached here then, we need to cerate the key pair
tempPublic, tempPrivate, err := box.GenerateKey(rand.Reader)
// check for errors first, otherwise continue and store the keys to files
if err != nil {
return public, private, err
}
// dereference the pointers
public = *tempPublic
private = *tempPrivate
// write the public key first
if err := writeKey(publicFile, keysFolderPrefixFormat, public[:]); err != nil {
return public, private, err
}
// write the private
if err := writeKey(privateFile, keysFolderPrefixFormat, private[:]); err != nil {
// delete the public key, otherwise we remain in an unwanted state
// the delete can fail as well, therefore we print an error
if err := deleteFile(publicFile); err != nil {
log.Printf("[SEVERE] - The private key for asymmetric encryption, %s, failed to be persisted. \nWhile trying to cleanup also the public key previosuly stored, %s, the operation failed as well.\nWe are now in an unrecoverable state.Please delete both files manually: %s - %s", privateFile, publicFile, privateFile, publicFile)
return public, private, err
}
return public, private, err
}
// return the data
return public, private, err
}
// Sanitizes the input of the communicationIdentifier
// The input is URL unescape, trimmed, set to lower case and all the white spaces are replaced with an underscore.
// TODO: evaluate the QueryUnescape error
func sanitizeIdentifier(id string) string {
// unescape in case it;s URL encoded
unescaped, _ := url.QueryUnescape(id)
// trim white spaces
trimmed := strings.TrimSpace(unescaped)
// make lower case
lowered := strings.ToLower(trimmed)
// replace the white spaces with _
cleaned := whiteSpaceRegEx.ReplaceAllLiteralString(lowered, "_")
return cleaned
}
func (engine *CryptoEngine) fetchAndIncrement() string {
engine.counterMutex.Lock()
defer engine.counterMutex.Unlock()
// first read the current value
// reset the counter
if engine.counter == math.MaxUint64 {
engine.counter = 0
}
// convert the counter to string
counterString := strconv.FormatUint(engine.counter, 10)
// increment the counter
engine.counter += 1
return counterString
}
// Gives access to the public key
func (engine *CryptoEngine) PublicKey() []byte {
return engine.publicKey[:]
}
// This method accepts a message , then encrypts its Version+Type+Text using a symmetric key
func (engine *CryptoEngine) NewEncryptedMessage(msg message) (EncryptedMessage, error) {
m := EncryptedMessage{}
// derive nonce
nonce, err := deriveNonce(engine.nonceKey, engine.salt, engine.context, engine.fetchAndIncrement())
if err != nil {
return m, err
}
m.nonce = nonce
encryptedData := secretbox.Seal(nil, msg.toBytes(), &m.nonce, &engine.secretKey)
// assign the encrypted data to the message
m.data = encryptedData
// calculate the overall size of the message
m.length = uint64(len(m.data) + len(m.nonce) + 8)
return m, nil
}
// This method accepts the message as byte slice and the public key of the receiver of the messae,
// then encrypts it using the asymmetric key public key.
// If the public key is not privisioned and does not have the required length of 32 bytes it raises an exception.
func (engine *CryptoEngine) NewEncryptedMessageWithPubKey(msg message, verificationEngine VerificationEngine) (EncryptedMessage, error) {
encryptedMessage := EncryptedMessage{}
// get the peer public key
peerPublicKey := verificationEngine.PublicKey()
// check the size of the peerPublicKey
if len(peerPublicKey) != keySize {
return encryptedMessage, KeyNotValidError
}
// check the peerPublicKey is not empty (all zeros)
if bytes.Compare(peerPublicKey[:], emptyKey) == 0 {
return encryptedMessage, KeyNotValidError
}
// derive nonce
nonce, err := deriveNonce(engine.nonceKey, engine.salt, engine.context, engine.fetchAndIncrement())
if err != nil {
return encryptedMessage, err
}
// set the nonce to the encrypted message
encryptedMessage.nonce = nonce
// calculate the hash of the peer public key
sha224String := fmt.Sprintf("%x", sha256.Sum224(peerPublicKey[:]))
// lock the mutex
engine.mutex.Lock()
// check if the pre sgared key is already present in the map
if preSharedKey, ok := engine.preSharedKeysMap[sha224String]; ok { // means the key is there
// unlock the mutex
engine.mutex.Unlock()
// encrypt with the pre-computed key
encryptedData := box.SealAfterPrecomputation(nil, msg.toBytes(), &nonce, &preSharedKey)
// assign the encrypted data to the message
encryptedMessage.data = encryptedData
} else { // means the key is not there
// generate the key
// init the buffer
preSharedKey = [keySize]byte{}
// precompute the share key
box.Precompute(&preSharedKey, &peerPublicKey, &engine.privateKey)
// assign it to the map
engine.preSharedKeysMap[sha224String] = preSharedKey
// unlock the mutex once the map has the sharedKey set
engine.mutex.Unlock()
// encrypt with the pre-computed key
encryptedData := box.SealAfterPrecomputation(nil, msg.toBytes(), &nonce, &preSharedKey)
// assign the encrypted data to the message
encryptedMessage.data = encryptedData
}
// calculate the size of the message
encryptedMessage.length = uint64(len(encryptedMessage.data) + len(encryptedMessage.nonce) + 8)
return encryptedMessage, nil
}
// This method is used to decrypt messages where symmetrci encryption is used
func (engine *CryptoEngine) Decrypt(encryptedBytes []byte) (*message, error) {
var err error
msg := new(message)
// convert the bytes to an encrypted message
encryptedMessage, err := encryptedMessageFromBytes(encryptedBytes)
if err != nil {
return nil, err
}
decryptedMessageBytes, valid := secretbox.Open(nil, encryptedMessage.data, &encryptedMessage.nonce, &engine.secretKey)
// if the verification failed
if !valid {
return nil, MessageDecryptionError
}
// means we successfully managed to decrypt
msg, err = messageFromBytes(decryptedMessageBytes)
return msg, nil
}
// This method is used to decrypt messages where symmetrci encryption is used
func (engine *CryptoEngine) DecryptWithPublicKey(encryptedBytes []byte, verificationEngine VerificationEngine) (*message, error) {
var err error
// get the peer public key
peerPublicKey := verificationEngine.PublicKey()
// convert the bytes to an encrypted message
encryptedMessage, err := encryptedMessageFromBytes(encryptedBytes)
if err != nil {
return nil, err
}
// Make sure the key has a valid size
if len(peerPublicKey) < keySize {
return nil, KeyNotValidError
}
// calculate the hash of the peer public key
sha224String := fmt.Sprintf("%x", sha256.Sum224(peerPublicKey[:]))
// lock the mutex
engine.mutex.Lock()
// check if the pre sgared key is already present in the map
if preSharedKey, ok := engine.preSharedKeysMap[sha224String]; ok { // means the key is there
// unlock the mutex
engine.mutex.Unlock()
messageBytes, err := decryptWithPreShared(preSharedKey, encryptedMessage)
if err != nil {
return nil, err
}
return messageFromBytes(messageBytes)
} else {
// otherwise decrypt with the standard box open function
messageBytes, valid := box.Open(nil, encryptedMessage.data, &encryptedMessage.nonce, &peerPublicKey, &engine.privateKey)
if !valid {
return nil, MessageDecryptionError
}
return messageFromBytes(messageBytes)
}
}
func decryptWithPreShared(preSharedKey [keySize]byte, m EncryptedMessage) ([]byte, error) {
if decryptedMessage, valid := box.OpenAfterPrecomputation(nil, m.data, &m.nonce, &preSharedKey); !valid {
return nil, MessageDecryptionError
} else {
return decryptedMessage, nil
}
}