4
0
mirror of https://github.com/1f349/twofactor.git synced 2025-01-12 09:36:31 +00:00
twofactor/vendor/github.com/sec51/qrcode/png.go
silenteh 72a472700b Addressed issue - Byte order was the problem
The counter needs to be represented in bigendian format.
Unfortunately with commit #00045cb I made the unfortunate choice to swap the endiannes from big-endian to little-endian.
This broke the functionality for certain counters.

- [x] Added Go vendoring
- [x] Bumped version of golang in travis yml file
- [x] Removed conversion files and instead used import of convert sec51 external library
2016-04-24 22:24:31 +02:00

401 lines
8.5 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qr
// PNG writer for QR codes.
import (
"bytes"
"encoding/binary"
"hash"
"hash/crc32"
)
// PNG returns a PNG image displaying the code.
//
// PNG uses a custom encoder tailored to QR codes.
// Its compressed size is about 2x away from optimal,
// but it runs about 20x faster than calling png.Encode
// on c.Image().
func (c *Code) PNG() []byte {
var p pngWriter
return p.encode(c)
}
type pngWriter struct {
tmp [16]byte
wctmp [4]byte
buf bytes.Buffer
zlib bitWriter
crc hash.Hash32
}
var pngHeader = []byte("\x89PNG\r\n\x1a\n")
func (w *pngWriter) encode(c *Code) []byte {
scale := c.Scale
siz := c.Size
w.buf.Reset()
// Header
w.buf.Write(pngHeader)
// Header block
binary.BigEndian.PutUint32(w.tmp[0:4], uint32((siz+8)*scale))
binary.BigEndian.PutUint32(w.tmp[4:8], uint32((siz+8)*scale))
w.tmp[8] = 1 // 1-bit
w.tmp[9] = 0 // gray
w.tmp[10] = 0
w.tmp[11] = 0
w.tmp[12] = 0
w.writeChunk("IHDR", w.tmp[:13])
// Comment
w.writeChunk("tEXt", comment)
// Data
w.zlib.writeCode(c)
w.writeChunk("IDAT", w.zlib.bytes.Bytes())
// End
w.writeChunk("IEND", nil)
return w.buf.Bytes()
}
var comment = []byte("Software\x00QR-PNG http://qr.swtch.com/")
func (w *pngWriter) writeChunk(name string, data []byte) {
if w.crc == nil {
w.crc = crc32.NewIEEE()
}
binary.BigEndian.PutUint32(w.wctmp[0:4], uint32(len(data)))
w.buf.Write(w.wctmp[0:4])
w.crc.Reset()
copy(w.wctmp[0:4], name)
w.buf.Write(w.wctmp[0:4])
w.crc.Write(w.wctmp[0:4])
w.buf.Write(data)
w.crc.Write(data)
crc := w.crc.Sum32()
binary.BigEndian.PutUint32(w.wctmp[0:4], crc)
w.buf.Write(w.wctmp[0:4])
}
func (b *bitWriter) writeCode(c *Code) {
const ftNone = 0
b.adler32.Reset()
b.bytes.Reset()
b.nbit = 0
scale := c.Scale
siz := c.Size
// zlib header
b.tmp[0] = 0x78
b.tmp[1] = 0
b.tmp[1] += uint8(31 - (uint16(b.tmp[0])<<8+uint16(b.tmp[1]))%31)
b.bytes.Write(b.tmp[0:2])
// Start flate block.
b.writeBits(1, 1, false) // final block
b.writeBits(1, 2, false) // compressed, fixed Huffman tables
// White border.
// First row.
b.byte(ftNone)
n := (scale*(siz+8) + 7) / 8
b.byte(255)
b.repeat(n-1, 1)
// 4*scale rows total.
b.repeat((4*scale-1)*(1+n), 1+n)
for i := 0; i < 4*scale; i++ {
b.adler32.WriteNByte(ftNone, 1)
b.adler32.WriteNByte(255, n)
}
row := make([]byte, 1+n)
for y := 0; y < siz; y++ {
row[0] = ftNone
j := 1
var z uint8
nz := 0
for x := -4; x < siz+4; x++ {
// Raw data.
for i := 0; i < scale; i++ {
z <<= 1
if !c.Black(x, y) {
z |= 1
}
if nz++; nz == 8 {
row[j] = z
j++
nz = 0
}
}
}
if j < len(row) {
row[j] = z
}
for _, z := range row {
b.byte(z)
}
// Scale-1 copies.
b.repeat((scale-1)*(1+n), 1+n)
b.adler32.WriteN(row, scale)
}
// White border.
// First row.
b.byte(ftNone)
b.byte(255)
b.repeat(n-1, 1)
// 4*scale rows total.
b.repeat((4*scale-1)*(1+n), 1+n)
for i := 0; i < 4*scale; i++ {
b.adler32.WriteNByte(ftNone, 1)
b.adler32.WriteNByte(255, n)
}
// End of block.
b.hcode(256)
b.flushBits()
// adler32
binary.BigEndian.PutUint32(b.tmp[0:], b.adler32.Sum32())
b.bytes.Write(b.tmp[0:4])
}
// A bitWriter is a write buffer for bit-oriented data like deflate.
type bitWriter struct {
bytes bytes.Buffer
bit uint32
nbit uint
tmp [4]byte
adler32 adigest
}
func (b *bitWriter) writeBits(bit uint32, nbit uint, rev bool) {
// reverse, for huffman codes
if rev {
br := uint32(0)
for i := uint(0); i < nbit; i++ {
br |= ((bit >> i) & 1) << (nbit - 1 - i)
}
bit = br
}
b.bit |= bit << b.nbit
b.nbit += nbit
for b.nbit >= 8 {
b.bytes.WriteByte(byte(b.bit))
b.bit >>= 8
b.nbit -= 8
}
}
func (b *bitWriter) flushBits() {
if b.nbit > 0 {
b.bytes.WriteByte(byte(b.bit))
b.nbit = 0
b.bit = 0
}
}
func (b *bitWriter) hcode(v int) {
/*
Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through
10111111
144 - 255 9 110010000 through
111111111
256 - 279 7 0000000 through
0010111
280 - 287 8 11000000 through
11000111
*/
switch {
case v <= 143:
b.writeBits(uint32(v)+0x30, 8, true)
case v <= 255:
b.writeBits(uint32(v-144)+0x190, 9, true)
case v <= 279:
b.writeBits(uint32(v-256)+0, 7, true)
case v <= 287:
b.writeBits(uint32(v-280)+0xc0, 8, true)
default:
panic("invalid hcode")
}
}
func (b *bitWriter) byte(x byte) {
b.hcode(int(x))
}
func (b *bitWriter) codex(c int, val int, nx uint) {
b.hcode(c + val>>nx)
b.writeBits(uint32(val)&(1<<nx-1), nx, false)
}
func (b *bitWriter) repeat(n, d int) {
for ; n >= 258+3; n -= 258 {
b.repeat1(258, d)
}
if n > 258 {
// 258 < n < 258+3
b.repeat1(10, d)
b.repeat1(n-10, d)
return
}
if n < 3 {
panic("invalid flate repeat")
}
b.repeat1(n, d)
}
func (b *bitWriter) repeat1(n, d int) {
/*
Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
---- ---- ------ ---- ---- ------- ---- ---- -------
257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66
*/
switch {
case n <= 10:
b.codex(257, n-3, 0)
case n <= 18:
b.codex(265, n-11, 1)
case n <= 34:
b.codex(269, n-19, 2)
case n <= 66:
b.codex(273, n-35, 3)
case n <= 130:
b.codex(277, n-67, 4)
case n <= 257:
b.codex(281, n-131, 5)
case n == 258:
b.hcode(285)
default:
panic("invalid repeat length")
}
/*
Extra Extra Extra
Code Bits Dist Code Bits Dist Code Bits Distance
---- ---- ---- ---- ---- ------ ---- ---- --------
0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7,8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 16385-24576
9 3 25-32 19 8 769-1024 29 13 24577-32768
*/
if d <= 4 {
b.writeBits(uint32(d-1), 5, true)
} else if d <= 32768 {
nbit := uint(16)
for d <= 1<<(nbit-1) {
nbit--
}
v := uint32(d - 1)
v &^= 1 << (nbit - 1) // top bit is implicit
code := uint32(2*nbit - 2) // second bit is low bit of code
code |= v >> (nbit - 2)
v &^= 1 << (nbit - 2)
b.writeBits(code, 5, true)
// rest of bits follow
b.writeBits(uint32(v), nbit-2, false)
} else {
panic("invalid repeat distance")
}
}
func (b *bitWriter) run(v byte, n int) {
if n == 0 {
return
}
b.byte(v)
if n-1 < 3 {
for i := 0; i < n-1; i++ {
b.byte(v)
}
} else {
b.repeat(n-1, 1)
}
}
type adigest struct {
a, b uint32
}
func (d *adigest) Reset() { d.a, d.b = 1, 0 }
const amod = 65521
func aupdate(a, b uint32, pi byte, n int) (aa, bb uint32) {
// TODO(rsc): 6g doesn't do magic multiplies for b %= amod,
// only for b = b%amod.
// invariant: a, b < amod
if pi == 0 {
b += uint32(n%amod) * a
b = b % amod
return a, b
}
// n times:
// a += pi
// b += a
// is same as
// b += n*a + n*(n+1)/2*pi
// a += n*pi
m := uint32(n)
b += (m % amod) * a
b = b % amod
b += (m * (m + 1) / 2) % amod * uint32(pi)
b = b % amod
a += (m % amod) * uint32(pi)
a = a % amod
return a, b
}
func afinish(a, b uint32) uint32 {
return b<<16 | a
}
func (d *adigest) WriteN(p []byte, n int) {
for i := 0; i < n; i++ {
for _, pi := range p {
d.a, d.b = aupdate(d.a, d.b, pi, 1)
}
}
}
func (d *adigest) WriteNByte(pi byte, n int) {
d.a, d.b = aupdate(d.a, d.b, pi, n)
}
func (d *adigest) Sum32() uint32 { return afinish(d.a, d.b) }