1
0

Lesson 5.6.

approximatelyEqual for double / float.
This commit is contained in:
Captain ALM 2022-08-15 16:13:57 +01:00
parent 9d2f0822c3
commit 21b7b2bc1c
Signed by: alfred
GPG Key ID: 4E4ADD02609997B1

View File

@ -1,30 +1,32 @@
#include <algorithm>
#include <cmath>
#include <iostream>
#include <cstdint> // for std::int64_t
#include <cassert> // for assert
std::int64_t powint(std::int64_t base, int exp)
// return true if the difference between a and b is within epsilon percent of the larger of a and b
bool approximatelyEqualRel(double a, double b, double relEpsilon)
{
assert(exp >= 0 && "powint: exp parameter has negative value");
return (std::abs(a - b) <= (std::max(std::abs(a), std::abs(b)) * relEpsilon));
}
std::int64_t result{ 1 };
while (exp)
{
if (exp & 1) {
std::cout << "a : " << result << "\n";
result *= base;
}
std::cout << "b : " << exp << "\n";
exp >>= 1;
std::cout << "c : " << base << "\n";
base *= base;
}
bool approximatelyEqualAbsRel(double a, double b, double absEpsilon, double relEpsilon)
{
// Check if the numbers are really close -- needed when comparing numbers near zero.
double diff{ std::abs(a - b) };
if (diff <= absEpsilon)
return true;
return result;
// Otherwise fall back to Knuth's algorithm
return (diff <= (std::max(std::abs(a), std::abs(b)) * relEpsilon));
}
int main()
{
std::cout << powint(7, 12); // 7 to the 12th power
// a is really close to 1.0, but has rounding errors
double a{ 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 };
return 0;
std::cout << approximatelyEqualRel(a, 1.0, 1e-8) << '\n'; // compare "almost 1.0" to 1.0
std::cout << approximatelyEqualRel(a-1.0, 0.0, 1e-8) << '\n'; // compare "almost 0.0" to 0.0
std::cout << approximatelyEqualAbsRel(a, 1.0, 1e-12, 1e-8) << '\n'; // compare "almost 1.0" to 1.0
std::cout << approximatelyEqualAbsRel(a-1.0, 0.0, 1e-12, 1e-8) << '\n'; // compare "almost 0.0" to 0.0
}